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Applications of High-Precision Arithmetic 
in Modern Scientific Computing 

  Highly nonlinear computations. 
  Computations involving highly ill-conditioned linear systems. 
  Computations involving data with very large dynamic range. 
  Large computations on highly parallel computer systems. 
  Computations where numerical sensitivity is not currently a major 

problem, but periodic testing is needed to ensure that results are reliable. 
  Research problems in mathematics and mathematical physics that 

involve constant recognition and integer relation detection. 

Few physicists, chemists or engineers are highly expert in numerical 
analysis.  Thus high-precision arithmetic is often a better remedy for 
severe numerical round-off error, even if the error could, in principle, be 
improved with more advanced algorithms or coding techniques. 
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Growth of Condition Number with 
System Size 

Consider the very simple differential equation y’’(x) = -f(x).  Discretization 
leads to the matrix:   



2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
· · · · · ·
0 · · · −1 2 −1 0
0 · · · 0 −1 2 −1
0 · · · 0 0 −1 2





The condition number of this matrix (the quotient of the largest eigenvalue 
to the smallest eigenvalue) is readily seen to be approximately 

κ(n) ≈ 4(n + 1)2

π2

For modest-sized n (relative to many huge systems now being attempted), 
systems of this type cannot be reliably solved using 64-bit arithmetic. 
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Available High-Precision Facilities 

Vendor-supported arithmetic: 
   Total  Significant 

Type   Bits  Digits  Support 
IEEE Double  64  16  In hardware on almost all systems. 
IEEE Extended  80  18  In hardware on Intel and AMD systems. 
IEEE Quad  128  33  In software from some vendors (50-100X 

      slower than IEEE double). 

Non-commercial (free) software: 
   Total  Significant 

Type   Bits  Digits  Support 
Double-double  128  32  DDFUN90, QD. 
Quad-double  256  64  QD. 
Arbitrary  Any  Any  ARPREC, MPFUN90, GMP, MPFR. 

Commercial software:  Mathematica, Maple. 
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LBNL’s High-Precision Software 

  QD:  double-double (31 digits) and quad-double (62 digits).  
  ARPREC:  arbitrary precision. 
  Low-level routines written in C++. 
  C++ and Fortran-90 translation modules permit use with existing C++ and 

Fortran-90 programs -- only minor code changes are required. 
  Includes many common functions:  sqrt, cos, exp, gamma, etc. 
  PSLQ, root finding, numerical integration. 

Available at:  http://www.experimentalmath.info 

Authors: Xiaoye Li, Yozo Hida, Brandon Thompson and DHB 
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GMP and MPFR 

GNU Multiprecision Library: 
  High-level signed integer arithmetic functions (mpz).  
  High-level rational arithmetic functions (mpq).  
  High-level floating-point arithmetic functions (mpf).  
  C++ class-based interface to all of the above. 
Available at:  http://gmplib.org/ 

MPFR:   
  C library of floating-point accurately rounding arithmetic functions. 
Available at:  http://www.mpfr.org 

C++ high-level interfaces based on MPFR:  
  MPFRCPP  
  MPFR++ 
  GMPFRXX 
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Application of High-Precision Arithmetic: 
Supernova Simulations 

  Researchers at LBNL are using QD to 
solve for non-local thermodynamic 
equilibrium populations of iron and other 
atoms in the atmospheres of supernovas. 

  Iron may exist in several species, so it is 
necessary to solve for all species 
simultaneously. 

  Since the relative population of any state 
from the dominant state is proportional to 
the exponential of the ionization energy, 
the dynamic range of these values can be 
very large. 

  The quad-double portion now dominates 
the entire computation. 

P. H. Hauschildt and E. Baron, “The Numerical Solution of the Expanding Stellar Atmosphere Problem,” 
Journal Computational and Applied Mathematics, vol. 109 (1999), pg. 41-63. 
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Climate Modeling 

  Climate and weather simulations are 
fundamentally chaotic – if microscopic 
changes are made to the current state, 
soon the future state is quite different. 

  In practice, computational results are 
altered even if minor changes are 
made to the code or the system. 

  This numerical variation is a major 
nuisance for code maintenance. 

  He and Ding of LBNL found that by 
using double-double arithmetic to 
implement a key inner product loop, 
most of this numerical variation 
disappeared. 

Yun He and Chris Ding, “Using Accurate Arithmetics to Improve Numerical Reproducibility and Stability in 
Parallel Applications,” Journal of Supercomputing, vol. 18, no. 3 (Mar 2001), pg. 259-277. 
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Planetary Orbit Calculations 

  A key question of planetary theory is whether 
the solar system is stable over cosmological 
time frames (billions of years). 

  Scientists have studied this question by 
performing very long-term simulations of 
planetary motions. 

  This problem is well known to exhibit chaos. 
  Simulations typically do well for long periods 

of time, but then fail at certain key junctures, 
unless special measures are taken. 

  Researchers have found that double-double 
or quad-double arithmetic is required to avoid 
severe numerical inaccuracies, even if other 
techniques are employed. 

“The orbit of any one planet 
depends on the combined 
motions of all the planets, not 
to mention the actions of all 
these on each other. To 
consider simultaneously all 
these causes of motion and to 
define these motions by exact 
laws allowing of convenient 
calculation exceeds, unless I 
am mistaken, the forces of the 
entire human intellect.” [Isaac 
Newton, 1687]

G. Lake, T. Quinn and D. C. Richardson, “From Sir Isaac to the Sloan Survey: Calculating the Structure and 
Chaos Due to Gravity in the Universe,” Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete 
Algorithms, SIAM, Philadelphia, 1997, pg. 1-10. 
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Coulomb N-Body Atomic System 
Simulations 

  Alexei Frolov of Queen’s University in Canada has used MPFUN90 to 
solve a generalized eigenvalue problem that arises in Coulomb n-body 
interactions. 

  Matrices are typically 5,000 x 5,000 and are very nearly singular. 
  Frolov has also computed elements of the Hamiltonian matrix and the 

overlap matrix in four- and five-body systems. 
  These computations typically require 120-digit arithmetic. 

“We can consider and solve the bound state few-body problems which have 
been beyond our imagination even four years ago.” – Frolov 

A. M. Frolov and DHB, “Highly Accurate Evaluation of the Few-Body Auxiliary Functions and Four-Body 
Integrals,” Journal of Physics B, vol. 36, no. 9 (14 May 2003), pg. 1857-1867. 
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Schrodinger Solutions for Lithium and 
Helium Atoms 

  Zong-Chao Yan and colleagues at the University of Windsor have used 
high-precision arithmetic to obtain accurate solutions to the Schrodinger 
equation for the lithium atom. 

  The ground state energy has now been calculated to an accuracy of a few 
parts in a trillion, a 1500X improvement over the best previous results. 

  With these results, Yan and his colleagues have been able to test the 
relativistic and QED effects at the 50 parts per million level and also at the 
one part per million level. 

  In related computations, high-precision arithmetic has been used in some 
theoretical calculations of the fine structure splittings in helium atoms.  
Experimental tests are now planned. 

Z.-C. Yan and G. W. F. Drake, “Bethe Logarithm and QED Shift for Lithium,” Physics Review Letters, vol. 81 
(12 Sep 2003), pg. 774-777. 
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Electromagnetic Scattering Theory 

  A key operation in computational electromagnetic scattering is to find the 
branch points of the asymptotic expansion of the spheroidal wave 
function. 

  Schemes based on Newton-Raphson iterations using standard machine 
precision have accuracy limitations. 

  The MPFUN90 package has been used to greatly extend the range of 
wavefunctions that can be studied with these simulations. 

  This project required the conversion of a large body of existing Fortran 
code. 

B. E. Barrowes, K. O'Neill, T. M. Grzegorczyk and J. A. Kong, “Asymptotic Expansions of the Prolate Angular 
Spheroidal Wave Function for Complex Size Parameter,” Studies in Applied Mathematics, vol. 113 
(2004), pg. 271-301. 
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The PSLQ Integer Relation Algorithm 

Let (xn) be a given vector of real numbers.  An integer relation algorithm 
finds integers (an) such that  

1.  H. R. P. Ferguson, DHB and S. Arno, “Analysis of PSLQ, An Integer Relation Finding Algorithm,” 
Mathematics of Computation, vol. 68, no. 225 (Jan 1999), pg. 351-369. 
2.  DHB and D. J. Broadhurst, “Parallel Integer Relation Detection: Techniques and Applications,” 
Mathematics of Computation, vol. 70, no. 236 (Oct 2000), pg. 1719-1736. 

(or within “epsilon” of zero, where epsilon = 10-p and p is the precision).  

At the present time the “PSLQ” algorithm of mathematician-sculptor 
Helaman Ferguson is the most widely used integer relation algorithm.  It 
was named one of ten “algorithms of the century” by Computing in Science 
and Engineering. 

PSLQ (or any other integer relation scheme) requires very high precision (at 
least n*d digits, where d is the size in digits of the largest ak), both in the 
input data and in the operation of the algorithm. 

a1x1 + a2x2 + · · · + anxn = 0
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Bifurcation Points in Chaos Theory 

exhibits 8-way periodicity instead 
of 4-way periodicity.    

By means of a sequential 
approximation scheme, one can 
obtain the numerical value of t to 
any desired precision: 

Let t = B3 = the smallest r such 
that the “logistic iteration” 

3.54409035955192285361596598660480454058309984544457367545781… 

Applying PSLQ to (1, t, t2, t3, …, t12), we obtained the result that t is a root of 
the polynomial: 

xn+1 = rxn(1− xn)

0 = 4913 + 2108t2 − 604t3 − 977t4 + 8t5 + 44t6 + 392t7

−193t8 − 40t9 + 48t10 − 12t11 + t12
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The BBP Formula for Pi 

In 1996, at the suggestion of Peter Borwein, Simon Plouffe used DHB’s 
PSLQ program and arbitrary precision software to discover this new 
formula for pi: 

This formula permits one to compute binary (or hexadecimal) digits of pi 
beginning at an arbitrary starting position, using a very simple scheme 
that can run on any system with standard 64-bit or 128-bit arithmetic. 

Recently it was proven that no base-n formulas of this type exist for pi, 
except n = 2m. 

1.  DHB, P. B. Borwein and S. Plouffe, “On the Rapid Computation of Various Polylogarithmic Constants,” 
Mathematics of Computation, vol. 66, no. 218 (Apr 1997), pg. 903-913. 
2.  J. M. Borwein, W. F. Galway and D. Borwein, “Finding and Excluding b-ary Machin-Type BBP 
Formulae,” Canadian Journal of Mathematics, vol. 56 (2004), pg 1339-1342. 

π =
∞∑

n=0

1
16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
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The Quinn-Rand-Strogatz Constant of 
Nonlinear Physics 

Quinn, Rand, and Strogatz recently described a nonlinear oscillator system by 
means of the formula 

For large N, s = 1 – c / N (approx), where c = 0.6054436...  Strogatz asked us to 
validate and extend this computation, and challenged us to identify this limit if it 
exists. 

By means of a Richardson extrapolation scheme, implemented on 64-CPUs of a 
highly parallel computer system, we computed (using the QD software) 

c = 0.6054436571967327494789228424472074752208996… 

This led to the provable conclusion that the limit c exists and is the root of a Hurwitz 
zeta function (below).  As a bonus, we obtained some asymptotic terms. 

DHB, J. M. Borwein and R. E. Crandall, “Resolution of the Quinn-Rand-Strogatz Constant of Nonlinear 
Physics,” Experimental Mathematics, to appear, http://crd.lbl.gov/~dhbailey/dhbpapers/QRS.pdf. 

0 =
N∑

i=1

(
2
√

1− s2(1− 2(i− 1)/(N − 1))2 − 1√
1− s2(1− 2(i− 1)/(N − 1))2

)

ζ(1/2, x/2) = 0
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Tanh-Sinh Quadrature 

Given f(x) defined on (-1,1), define g(t) = tanh (pi/2 sinh t).  Then setting 
x = g(t) yields 

where xj = g(hj) and wj = g’(hj).   Since g’(t) goes to zero very rapidly for 
large t, the product  f(g(t)) g’(t)  typically is a nice bell-shaped function for 
which the Euler-Maclaurin formula implies that the simple summation above 
is remarkably accurate.  Reducing h by half typically doubles the number of 
correct digits. 

Tanh-sinh quadrature is the best integration scheme for functions with 
vertical derivatives or blow-up singularities at endpoints, or for any function 
at very high precision (> 1000 digits). 

1.  DHB, Xiaoye S. Li and Karthik Jeyabalan, “A Comparison of Three High-Precision Quadrature 
Schemes,” Experimental Mathematics, vol. 14 (2005), no. 3, pg. 317-329. 
2.  H. Takahasi and M. Mori, “Double Exponential Formulas for Numerical Integration,” Publications of RIMS, 
Kyoto University, vol. 9 (1974), pg. 721–741. 

∫ 1

−1
f(x) dx =

∫ ∞

−∞
f(g(t))g′(t) dt ≈ h

N∑

j=−N

wjf(xj),
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A Log-Tan Integral Identity 

This identity arises from analysis 
of volumes of knot complements in 
hyperbolic space.  This is simplest 
of 998 related identities. 

We have verified this numerically 
to 20,000 digits (using highly 
parallel tanh-sinh quadrature). 

DHB, J. M. Borwein, V. Kapoor and E. Weisstein, 
“Ten Problems in Experimental Mathematics,” 
American Mathematical Monthly, vol. 113, no. 6 
(Jun 2006), pg. 481-409 . 

24
7
√

7

∫ π/2

π/3
log

∣∣∣∣∣
tan t +

√
7

tan t−
√

7

∣∣∣∣∣ dt = L−7(2) =

∞∑

n=0

[
1

(7n + 1)2
+

1
(7n + 2)2

− 1
(7n + 3)2

+
1

(7n + 4)2
− 1

(7n + 5)2
− 1

(7n + 6)2

]
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Ising Integrals 

We recently applied our methods to study three classes of integrals that 
arise in the Ising theory of mathematical physics – Dn and two others: 

where in the last line uk = t1 t2 … tk. 
DHB, J. M. Borwein and R. E. Crandall, “Integrals of the Ising Class,” Journal of Physics A: Mathematical 
and General, vol. 39 (2006), pg. 12271-12302. 

Cn :=
4
n!

∫ ∞

0
· · ·

∫ ∞

0

1
(∑n

j=1(uj + 1/uj)
)2

du1

u1
· · · dun

un

Dn :=
4
n!

∫ ∞

0
· · ·

∫ ∞

0

∏
i<j

(
ui−uj

ui+uj

)2

(∑n
j=1(uj + 1/uj)

)2

du1

u1
· · · dun

un

En = 2
∫ 1

0
· · ·

∫ 1

0




∏

1≤j<k≤n

uk − uj

uk + uj




2

dt2 dt3 · · · dtn
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Computing and Evaluating Cn 

where K0 is the modified Bessel function.  In this form, the Cn constants 
appear naturally in in quantum field theory (QFT).   

We used this formula to compute 1000-digit numerical values of various 
Cn, from which the following results and others were found, then proven: 

We observed that the multi-dimensional Cn integrals can be transformed 
to 1-D integrals: 

C1 = 2
C2 = 1

C3 = L−3(2) =
∑

n≥0

(
1

(3n + 1)2
− 1

(3n + 2)2

)

C4 =
7
12

ζ(3)

Cn =
2n

n!

∫ ∞

0
tKn

0 (t) dt
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Limiting Value of Cn 

The Cn numerical values appear to approach a limit.  For instance, 

What is this limit?  We copied the first 50 digits of this numerical value into 
the online Inverse Symbolic Calculator (ISC): 
http://ddrive.cs.dal.ca/~isc 

The result was: 

where gamma denotes Euler’s constant.  Finding this limit led us to the 
asymptotic expansion and made it clear that the integral representation of 
Cn is fundamental. 

C1024 = 0.63047350337438679612204019271087890435458707871273234 . . .

lim
n→∞

Cn = 2e−2γ
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Other Ising Integral Evaluations 

D2 = 1/3
D3 = 8 + 4π2/3− 27 L−3(2)
D4 = 4π2/9− 1/6− 7ζ(3)/2
E2 = 6− 8 log 2
E3 = 10− 2π2 − 8 log 2 + 32 log2 2
E4 = 22− 82ζ(3)− 24 log 2 + 176 log2 2− 256(log3 2)/3

+16π2 log 2− 22π2/3

E5
?= 42− 1984 Li4(1/2) + 189π4/10− 74ζ(3)− 1272ζ(3) log 2

+40π2 log2 2− 62π2/3 + 40(π2 log 2)/3 + 88 log4 2
+464 log2 2− 40 log 2

where Lin(x) is the polylog function.  D2, D3 and D4 were originally provided 
to us by mathematical physicist Craig Tracy, who hoped that our tools could 
help identify D5. 
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The Ising Integral E5 

We were able to reduce E5, 
which is a 5-D integral, to an 
extremely complicated 3-D 
integral. 

We computed this integral to 
250-digit precision, using a 
highly parallel, high-precision 
3-D quadrature program.  
Then we used a PSLQ 
program to discover the 
evaluation given on the 
previous page. 

We also computed D5 to 500 
digits, but were unable to 
identify it.  The digits are 
available if anyone wishes to 
further explore this question. 

E5 =
∫ 1

0

∫ 1

0

∫ 1

0

[
2(1− x)2(1− y)2(1− xy)2(1− z)2(1− yz)2(1− xyz)2

(
−

[
4(x + 1)(xy + 1) log(2)

(
y5z3x7 − y4z2(4(y + 1)z + 3)x6 − y3z

((
y2 + 1

)
z2 + 4(y+

1)z + 5) x5 + y2
(
4y(y + 1)z3 + 3

(
y2 + 1

)
z2 + 4(y + 1)z − 1

)
x4 + y

(
z

(
z2 + 4z

+5) y2 + 4
(
z2 + 1

)
y + 5z + 4

)
x3 +

((
−3z2 − 4z + 1

)
y2 − 4zy + 1

)
x2 − (y(5z + 4)

+4)x− 1)] /
[
(x− 1)3(xy − 1)3(xyz − 1)3

]
+

[
3(y − 1)2y4(z − 1)2z2(yz

−1)2x6 + 2y3z
(
3(z − 1)2z3y5 + z2

(
5z3 + 3z2 + 3z + 5

)
y4 + (z − 1)2z

(
5z2 + 16z + 5

)
y3 +

(
3z5 + 3z4 − 22z3 − 22z2 + 3z + 3

)
y2 + 3

(
−2z4 + z3 + 2

z2 + z − 2
)
y + 3z3 + 5z2 + 5z + 3

)
x5 + y2

(
7(z − 1)2z4y6 − 2z3

(
z3 + 15z2

+15z + 1) y5 + 2z2
(
−21z4 + 6z3 + 14z2 + 6z − 21

)
y4 − 2z

(
z5 − 6z4 − 27z3

−27z2 − 6z + 1
)
y3 +

(
7z6 − 30z5 + 28z4 + 54z3 + 28z2 − 30z + 7

)
y2 − 2

(
7z5

+15z4 − 6z3 − 6z2 + 15z + 7
)
y + 7z4 − 2z3 − 42z2 − 2z + 7

)
x4 − 2y

(
z3

(
z3

−9z2 − 9z + 1
)
y6 + z2

(
7z4 − 14z3 − 18z2 − 14z + 7

)
y5 + z

(
7z5 + 14z4 + 3

z3 + 3z2 + 14z + 7
)
y4 +

(
z6 − 14z5 + 3z4 + 84z3 + 3z2 − 14z + 1

)
y3 − 3

(
3z5

+6z4 − z3 − z2 + 6z + 3
)
y2 −

(
9z4 + 14z3 − 14z2 + 14z + 9

)
y + z3 + 7z2 + 7z

+1)x3 +
(
z2

(
11z4 + 6z3 − 66z2 + 6z + 11

)
y6 + 2z

(
5z5 + 13z4 − 2z3 − 2z2

+13z + 5) y5 +
(
11z6 + 26z5 + 44z4 − 66z3 + 44z2 + 26z + 11

)
y4 +

(
6z5 − 4

z4 − 66z3 − 66z2 − 4z + 6
)
y3 − 2

(
33z4 + 2z3 − 22z2 + 2z + 33

)
y2 +

(
6z3 + 26

z2 + 26z + 6
)
y + 11z2 + 10z + 11

)
x2 − 2

(
z2

(
5z3 + 3z2 + 3z + 5

)
y5 + z

(
22z4

+5z3 − 22z2 + 5z + 22
)
y4 +

(
5z5 + 5z4 − 26z3 − 26z2 + 5z + 5

)
y3 +

(
3z4−

22z3 − 26z2 − 22z + 3
)
y2 +

(
3z3 + 5z2 + 5z + 3

)
y + 5z2 + 22z + 5

)
x + 15z2 + 2z

+2y(z − 1)2(z + 1) + 2y3(z − 1)2z(z + 1) + y4z2
(
15z2 + 2z + 15

)
+ y2

(
15z4

−2z3 − 90z2 − 2z + 15
)

+ 15
]
/

[
(x− 1)2(y − 1)2(xy − 1)2(z − 1)2(yz − 1)2

(xyz − 1)2
]
−

[
4(x + 1)(y + 1)(yz + 1)

(
−z2y4 + 4z(z + 1)y3 +

(
z2 + 1

)
y2

−4(z + 1)y + 4x
(
y2 − 1

) (
y2z2 − 1

)
+ x2

(
z2y4 − 4z(z + 1)y3 −

(
z2 + 1

)
y2

+4(z + 1)y + 1)− 1) log(x + 1)] /
[
(x− 1)3x(y − 1)3(yz − 1)3

]
− [4(y + 1)(xy

+1)(z + 1)
(
x2

(
z2 − 4z − 1

)
y4 + 4x(x + 1)

(
z2 − 1

)
y3 −

(
x2 + 1

) (
z2 − 4z − 1

)

y2 − 4(x + 1)
(
z2 − 1

)
y + z2 − 4z − 1

)
log(xy + 1)

]
/

[
x(y − 1)3y(xy − 1)3(z−

1)3
]
−

[
4(z + 1)(yz + 1)

(
x3y5z7 + x2y4(4x(y + 1) + 5)z6 − xy3

((
y2+

1) x2 − 4(y + 1)x− 3
)
z5 − y2

(
4y(y + 1)x3 + 5

(
y2 + 1

)
x2 + 4(y + 1)x + 1

)
z4+

y
(
y2x3 − 4y(y + 1)x2 − 3

(
y2 + 1

)
x− 4(y + 1)

)
z3 +

(
5x2y2 + y2 + 4x(y + 1)

y + 1) z2 + ((3x + 4)y + 4)z − 1
)
log(xyz + 1)

]
/

[
xy(z − 1)3z(yz − 1)3(xyz − 1)3

])]

/
[
(x + 1)2(y + 1)2(xy + 1)2(z + 1)2(yz + 1)2(xyz + 1)2

]
dx dy dz
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Recursions in Ising Integrals 

Consider the 2-parameter class of Ising integrals (which arises in QFT for odd k): 

After computing 1000-digit numerical values for all n up to 36 and all k up to 75 
(performed on a highly parallel computer system), we discovered (using PSLQ) 
linear relations in the rows of this array.  For example, when n = 3: 

Similar, but more complicated, recursions have been found for all n. 
DHB, D. Borwein, J. M. Borwein and R. Crandall, “Hypergeometric Forms for Ising-Class Integrals,” 
Experimental Mathematics, to appear, http://crd.lbl.gov/~dhbailey/dhbpapers/meijer/pdf. 

J. M. Borwein and B. Salvy, “A Proof of a Recursion for Bessel Moments,” Experimental Mathematics, vol. 17 
(2008), pg. 223-230.   

0 = C3,0 − 84C3,2 + 216C3,4

0 = 2C3,1 − 69C3,3 + 135C3,5

0 = C3,2 − 24C3,4 + 40C3,6

0 = 32C3,3 − 630C3,5 + 945C3,7

0 = 125C3,4 − 2172C3,6 + 3024C3,8

Cn,k =
4
n!

∫ ∞

0
· · ·

∫ ∞

0

1
(∑n

j=1(uj + 1/uj)
)k+1

du1

u1
· · · dun

un
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Four Hypergeometric Evaluations 

DHB, J. M. Borwein, D. Broadhurst and M. L. Glasser, “Elliptic Integral Evaluations of Bessel Moments,” 
Journal of Physics A:  Mathematical and General, vol. 41 (2008), pg 205203.

c3,0 =
3Γ6(1/3)
32π22/3

=
√

3π3

8 3F2

(
1/2, 1/2, 1/2

1, 1

∣∣∣∣∣
1
4

)

c3,2 =
√

3π3

288 3F2

(
1/2, 1/2, 1/2

2, 2

∣∣∣∣∣
1
4

)

c4,0 =
π4

4

∞∑

n=0

(2n
n

)4

44n
=

π4

4 4F3

(
1/2, 1/2, 1/2, 1/2

1, 1, 1

∣∣∣∣∣1
)

c4,2 =
π4

64

[
44F3

(
1/2, 1/2, 1/2, 1/2

1, 1, 1

∣∣∣∣∣1
)

−34F3

(
1/2, 1/2, 1/2, 1/2

2, 1, 1

∣∣∣∣∣1
)]
− 3π2

16
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2-D Integral in Bessel Moment Study 

We conjectured (and later proved) 

Here K denotes the complete 
elliptic integral of the first kind 

Note that the integrand function 
has singularities on all four sides 
of the region of integration. 

We were able to evaluate this 
integral to 120-digit accuracy, 
using 1024 cores of the “Franklin” 
Cray XT4 system at LBNL. 

c5,0 =
π

2

∫ π/2

−π/2

∫ π/2

−π/2

K(sin θ)K(sinφ)√
cos2 θ cos2 φ + 4 sin2(θ + φ)

dθ dφ
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Heisenberg Spin Integrals 

In another recent application of these methods, we investigated the following 
“spin integrals,” which arise from studies in mathematical physics: 

H. E. Boos, V. E. Korepin, Y. Nishiyama and M. Shiroishi, “Quantum Correlations and Number Theory,” 
Journal of Physics A: Mathematical and General, vol. 35 (2002), pg. 4443.  

P (n) :=
πn(n+1)/2

(2πi)n
·
∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
U(x1 − i/2, x2 − i/2, · · · , xn − i/2)

× T (x1 − i/2, x2 − i/2, · · · , xn − i/2) dx1dx2 · · · dxn

where

U(x1 − i/2, x2 − i/2, · · · , xn − i/2) =
∏

1≤k<j≤n sinh[π(xj − xk)]
∏

1≤j≤n in coshn(πxj)

T (x1 − i/2, x2 − i/2, · · · , xn − i/2) =
∏

1≤j≤n(xj − i/2)j−1(xj + i/2)n−j

∏
1≤k<j≤n(xj − xk − i)
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Evaluations of P(n) 
Derived Analytically, Confirmed Numerically 

P (1) =
1
2
, P (2) =

1
3
− 1

3
log 2, P (3) =

1
4
− log 2 +

3
8
ζ(3)

P (4) =
1
5
− 2 log 2 +

173
60

ζ(3)− 11
6

ζ(3) log 2− 51
80

ζ2(3)− 55
24

ζ(5) +
85
24

ζ(5) log 2

P (5) =
1
6
− 10

3
log 2 +

281
24

ζ(3)− 45
2

ζ(3) log 2− 489
16

ζ2(3)− 6775
192

ζ(5)

+
1225

6
ζ(5) log 2− 425

64
ζ(3)ζ(5)− 12125

256
ζ2(5) +

6223
256

ζ(7)

−11515
64

ζ(7) log 2 +
42777
512

ζ(3)ζ(7)

and a much more complicated expression for P(6).  Run times increase very 
rapidly with the dimension n: 

n Digits Processors Run Time
2 120 1 10 sec.
3 120 8 55 min.
4 60 64 27 min.
5 30 256 39 min.
6 6 256 59 hrs.
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High-precision Arithmetic is Indispensible in  
Modern Scientific Computing 

  State-of-the-art large-scale scientific calculations involving highly 
nonlinear systems often require numerical precision beyond conventional 
64-bit floating-point arithmetic. 

  Few physicists, chemists and engineers are experts in numerical 
analysis, so software-based high-precision arithmetic is often the best 
remedy for severe numerical round-off error. 

  The emerging “experimental” methodology in mathematics and 
mathematical physics often requires hundreds or even thousands of 
digits of precision. 

  Double-double, quad-double and arbitrary precision software libraries are 
now widely available (and in most cases are free). 

  High-level C, C++ and Fortran-90 interfaces facilitate the conversion of 
large scientific programs to use this software. 

  There is a critical need to develop much faster techniques for numerical 
integration in multiple dimensions. 


